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Idea

I the point estimate θ̂ alone does not give much information about parameter θ
I Without additional information, we do not know how close θ̂ is to real θ
I Instead of giving just one value θ̂ as the estimate for θ, we may produce an

interval that is likely to include the true value of θ

θ̂ = 5.2

A plausible range of values for the population parameter is called a confidence
interval (CI):

[L,U] = [4.9, 5.45]
I Two important factors: the length of the interval and the confidence interval
I The length of the interval CU − CL shows the precision with which we can

estimate θ



CI on the Mean of a Normal Distribution, Variance known

For i.i.d. r.v.s X1,X2, ...,Xn with unknown expected value E (Xi ) = µ and known
variance Var(Xi ) = σ2 the sample mean is approximately Normal(µ, σ2/n).

Z = X̄ − µ
σ/
√

n ∼ Normal(0, 1)

I a confidence interval estimate for µ is an interval of the form l ≤ µ ≤ u
I different samples will produce different values of l and u, these end-points are

values of random variables L and U, respectively



CI on the Mean of a Normal Distribution, Variance known

P(L ≤ µ ≤ U) = 1− α, 0 ≤ α ≤ 1

I There is a probability of 1− α of selecting a sample for which the CI will contain
the true value of µ.

I Once we have selected the sample and computed l and u, the resulting confidence
interval for is l ≤ µ ≤ u

I l and u are the lower- and upper-confidence limits (bounds)
I 1− α is the confidence coefficient



CI on the Mean of a Normal Distribution, Variance known

Z = X̄ − µ
σ/
√

n ∼ Normal(0, 1)

We can write
P(L ≤ µ ≤ U) = 1− α, 0 ≤ α ≤ 1

as
P(−zα/2 ≤

X̄ − µ
σ/
√

n ≤ zα/2) = 1− α, 0 ≤ α ≤ 1

P(X̄ − zα/2σ/
√

n ≤ µ ≤ X̄ + zα/2σ/
√

n) = 1− α

This is a random interval because the end-points

X̄ ± Zα/2σ/
√

n

involve the random variable X̄ .



CI on the Mean of a Normal Distribution, Variance known

If x̄ is the sample mean of a random sample of size n from a Normal population with
known variance σ2, a 100(1− α)% CI on µ is given by

x̄ − zα/2σ/
√

n ≤ µ ≤ x̄ + zα/2σ/
√

n

where zα/2 is the upper 100α/2 percentage point of the standard normal distribution.
Z-scores for commonly used confidence intervals:
Confidence level and Z score

90% z0.10/2 = 1.645

95% z0.05/2 = 1.96

99% z0.01/2 = 2.576



Interpreting a Confidence Interval

Say, the 95% CI for the mean boiling temperature of a certain liquid is
102.3 ≤ µ ≤ 104.2. Does it mean that µ is within this interval with probability 0.95?

I the true value of µ is unknown and the obtained CI above might be either correct
or wrong

I a CI is a random interval because in the probability statement defining the
endpoints of the interval L and U are random variables

I the correct interpretation of a 100(1− α)% CI depends on the relative frequency
view of probability

I if an infinite number of random samples are collected and a 100(1− α)% CI for µ
is computed from each sample, 100(1− α)% of these intervals will contain the
true value of µ



Interpreting a Confidence Interval
Repeated construction of a confidence interval for µ:

I the dots at the center of the intervals indicate the point estimate of µ (that is, x̄)
I one of the intervals fails to contain the true value of µ
I if this were a 95% confidence interval, in the long run only 5% of the intervals

would fail to contain µ.



Interpreting a Confidence Interval

I In practice, we obtain only one random sample and calculate one confidence
interval

I We can’t talk about the probability that the given CI estimate contains µ
I The appropriate statement is that the observed interval [l , u] brackets the true

value of µ with confidence 100(1− α).



CI on the Mean of a Normal Distribution, Variance known

Suppose a number of weekly hours of internet use among 9-11 y.o. Australian children
is normaly distributed with variance of 36 hours. Suppose the mean number of hours of
internet use per week is 5.75 hours obtained from the data of 2500 children. Calculate
a 95% confidence interval for the mean number of hours of internet use per week.

95% z0.05/2 = 1.96

x̄ = 5.75, n = 2500, σ2 = 36

The 95% CI is
x̄ − zα/2σ/

√
n ≤ µ ≤ x̄ + zα/2σ/

√
n

5.75− (1.96)6/
√

2500 ≤ µ ≤ 5.75 + (1.96)6/
√

2500

[5.515, 5.985] hous per week



Confidence Level and Precision of Estimation

The 99% CI is longer than the 95% CI → we have a higher level of confidence in the
99% confidence interval

I For a fixed sample size n and standard deviation σ, the higher the confidence
level, the longer the resulting CI

I The length of a confidence interval is a measure of the precision of estimation
I Obtain a confidence interval that is short enough for decision-making purposes
I Choose the sample size n to be large enough to give a CI of specified length or

precision with prescribed confidence.



Choice of sample size

If x̄ is used as an estimate of µ, we can be 100(1− α)% confident that the error
|x̄ − µ| will not exceed a specified amount E when the sample size is

n =
(

zα/2σ

E

)2

if n is not an integer, it must be rounded up.



Large-Sample Confidence Interval

When n is large (n > 30, better to have n > 40), the quantity

X̄ − µ
S/
√

n

has an approximate standard normal distribution. Consequently,

x̄ − zα/2s/
√

n ≤ µ ≤ x̄ + zα/2s/
√

n

is a large-sample confidence interval for µ, with confidence level of approximately
100(1− α)%



Large-Sample Confidence Interval. Example

Mercury contamination in a certain fish. Note that the distribution of mercury
concentration is not normal. A sample of fish was selected from 53 Florida lakes, and
mercury concentration in the muscle tissue was measured (ppm):

n = 53 > 40, x̄ = 0.525, s = 0.3486

The approximate 95% CI on µ is:

x̄ − zα/2s/
√

n ≤ µ ≤ x̄ + zα/2s/
√

n

0.525− 1.96(0.3486)/
√

53 ≤ µ ≤ 0.525 + 1.96(0.3486)/
√

53

0.4311 ≤ µ ≤ 0.6189



CI on the Mean of a Normal Distribution, Variance is Unknown

If x̄ is the sample mean of a random sample of size n from a Normal population with
unknown variance σ2. The random variable

T = X̄ − µ
S/
√

n

has a t distribution with n - 1 degrees of freedom.
The general appearance of the t distribution is similar to the standard normal
distribution in that both distributions are symmetric and unimodal, and the maximum
ordinate value is reached when the mean µ = 0. The t distribution has heavier tails
than the normal; that is, it has more probability in the tails than does the normal
distribution.



t confidence interval on µ

If x̄ and s are the mean and standard deviation of a random sample of size n from a
Normal population with unknown variance σ2, a 100(1− α)% CI on µ is given by

x̄ − tα/2,n−1s/
√

n ≤ µ ≤ x̄ + tα/2,n−1s/
√

n

where tα/2,n−1 is the upper 100α/2 percentage point of the t distribution with n − 1
degrees of freedom.
tα/2,n−1 depends on desired confidence level and degrees of freedom.
R (90% confidence level , sample of size n=20): qt(1-0.10/2, 20-1) = 1.729



t confidence interval on µ. Example

A farmer weighs 10 randomly chosen watermelons from his farm. Data x̄ = 9.26 and
s = 1.99. Assuming that the weight is normally distributed with mean µ and variance
σ2, find a 95% confidence interval for µ.
R (95% confidence level, sample of size n=10): qt(1-0.05/2, 10-1) = 2.262

x̄ − tα/2,n−1s/
√

n ≤ µ ≤ x̄ + tα/2,n−1s/
√

n

9.26− 2.262(1.99)/
√

10 ≤ µ ≤ 9.26 + 2.262(1.99)/
√

10

[7.84, 10.68] is a 95% confidence interval for µ.



The Pivotal Method

Let X1,X2, ...,Xn be a random sample from a distribution with a parameter θ that is to
be estimated. The random variable Q is said to be a pivot or a pivotal quantity, if it
has the following properties:

I It is a function of the observed data X1,X2, ...,Xn and the unknown parameter θ
but it does not depend on any other unknown parameters:

Q = Q(X1,X2, ...,Xn; θ)

I The probability distribution of Q does not depend on θ or any other unknown
parameters.

Pivotal quantities allow the construction of exact confidence intervals, meaning they
have exactly the stated confidence level, as opposed to so-called ’large-sample’
(asymptotic) confidence intervals.

I an exact CI is valid for any sample size
I an asymptotic confidence interval is valid only for sufficiently large sample size



Exact intervals. The Pivotal Method
I Find a pivotal quantity Q = Q(X1,X2, ...,Xn; θ)
I Find upper and lower confidence limits on the pivotal quantity, that is, l and u

such that
P(q1 ≤ Q ≤ q2) = 1− α, 0 ≤ α ≤ 1

I The constants q1 and q2 are called critical values. They are obtained from a table
for the distribution of the pivotal quantity or from a computer program.

The example of a pivotal quantity is

Q = Q(X1,X2, ...,Xn; θ) = X̄ − µ
S/
√

n

P(q1 ≤
X̄ − µ
S/
√

n ≤ q2) = 0.95

which is equivalent to

P(X̄ − q1
S√
n ≤ µ ≤ X̄ + q2

S√
n ) = 0.95



The Pivotal Method. Exponential
Suppose X1,X2, ...,Xn are i.i.d. Exponential(λ). Then

n∑
i=1

Xi ∼ Gamma(n, λ)

It can be shown that
λX̄ ∼ Gamma(n, n)

Since the distribution here does not depend on the parameter λ, we see that

Q = λX̄

is a pivotal quantity.
We choose q1 and q2 to be the α/2 and 1− α/2 quantiles of the distribution of the
pivotal quantity. In R (alpha = 0.05 corresponds to the confidence level 95%):

qgamma(alpha/2, shape = n, rate = n)

qgamma(1− alpha/2, shape = n, rate = n)
Example: x̄ = 20, n = 10, the 95% CI is 0.479 ≤ λ/x̄ ≤ 1.708.



The Pivotal Method. Uniform

Suppose X1,X2, ...,Xn are i.i.d. Uniform(0, θ). Then

Xi
θ
∼ Uniform(0, 1)

It can be shown that

max
(

X1
θ
,
X2
θ
, ...,

Xn
θ

)
∼ Uniform(0, 1)

Since the distribution here does not depend on the parameter θ, we see that

Q = max
(

X1
θ
,
X2
θ
, ...,

Xn
θ

)
=

X(n)
θ

is a pivotal quantity.



The Pivotal Method. Uniform
To find 95% CI, we need to choose q1 and q2 such that

P(q1 ≤ Q =
X(n)
θ
≤ q2) = 0.95

P(q1 ≤
X(n)
θ
≤ q2) =

∫ q2

q1
nyn−1dy = qn

2 − qn
1 = 0.95

So qn
2 − qn

1 = 0.95 must hold and 0 < q1, q2 < 1 because X(n) ∼ Uniform(0, 1)

P
(

X(n)
q2
≤ θ ≤

X(n)
q1

)
= 0.95

The length of the interval is X(n)

(
1
q1
− 1

q2

)
. We can do anything with X(n) but we can

minimize
(

1
q1
− 1

q2

)
subject to the constraint qn

2 − qn
1 = 0.95. The solution is

q2 = 1, q1 = 0.051/n. Among 95% CIs the shortest one is θ ∈ [X(n),X(n)/0.051/n].



Confidence Intervals for the Variance of Normal Random Variables
Suppose X1,X2, ...,Xn are i.i.d. Normal(µ, σ2). Then find an interval estimator for σ2.
Assume that µ is also unknown.
The random variable Q

Q = (n − 1)S2

σ2 = 1
σ2

n∑
i=1

(
Xi − X̄

)2

has a chi-squared distribution with n-1 degrees of freedom, i.e., Q ∼ χ2
n−1. A

chi-squared distribution is a special case of Gamma distribution, χ2
n ∼ Gamma(n/2, 2).

Q is a pivotal quantity because its distribution does not depend on σ2 or any other
unknown parameters. The 100(1− α)%CI can be found by solving

P(χ2
1−α/2,n−1 ≤ Q ≤ χ2

α/2,n−1) = 1− α

P
(

(n − 1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n − 1)S2

χ2
1−α/2,n−1

)
= 1− α



One-Sided Confidence Bounds on the Variance

Two-sided: (n−1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n−1)S2

χ2
1−α/2,n−1

One-sided confidence bounds on σ2 are

(n − 1)S2

χ2
α,n−1

≤ σ2

σ2 ≤ (n − 1)S2

χ2
1−α,n−1



One-Sided Confidence Bounds on the Variance

An automatic filling machine is used to fill bottles with liquid detergent. A random
sample of 20 bottles results in a sample variance of fill volume of s2 = 0.01532 (fluid
ounce). If the variance of fill volume is too large, an unacceptable proportion of bottles
will be under- or overfilled. We will assume that the fill volume is approximately
normally distributed. A 95% upper confidence bound is found from

σ2 ≤ (n − 1)S2

χ2
1−α,n−1

σ2 ≤ (19)0.01532
10.117 = 0.0287

The standard deviation is σ = 0.17. Therefore, at the 95% level of confidence, the
data indicate that the process standard deviation could be as large as 0.17 fluid ounce.
In R: qchisq(.95, df=19,lower.tail=FALSE) = 10.117 gives the right tail probability.


