Confidence Intervals

Anastasiia Kim

April 27/29, 2020

Idea

- **I** the point estimate $\hat{\theta}$ alone does not give much information about parameter θ
- \triangleright Without additional information, we do not know how close $\hat{\theta}$ is to real θ
- Instead of giving just one value $\hat{\theta}$ as the estimate for θ , we may produce an interval that is likely to include the true value of *θ*

$$
\hat{\theta} = 5.2
$$

A plausible range of values for the population parameter is called a confidence interval (CI):

$$
[L, U] = [4.9, 5.45]
$$

- \triangleright Two important factors: the length of the interval and the confidence interval
- ► The length of the interval $C_U C_L$ shows the precision with which we can estimate *θ*

For i.i.d. r.v.s $X_1, X_2, ..., X_n$ with unknown expected value $E(X_i) = \mu$ and known variance $\mathit{Var}(X_i) = \sigma^2$ the sample mean is approximately $\mathit{Normal}(\mu, \sigma^2/n).$

$$
Z=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim \mathsf{Normal}(0,1)
$$

- \triangleright a confidence interval estimate for μ is an interval of the form $1 \leq \mu \leq \mu$
- \triangleright different samples will produce different values of l and u, these end-points are values of random variables L and U, respectively

$P(L \le \mu \le U) = 1 - \alpha, \quad 0 \le \alpha \le 1$

- \triangleright There is a probability of 1α of selecting a sample for which the CI will contain the true value of *µ*.
- In Once we have selected the sample and computed l and u , the resulting confidence interval for is $1 \leq \mu \leq u$
	- If l and u are the lower- and upper-confidence limits (bounds)
	- \blacktriangleright 1 α is the confidence coefficient

$$
Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0, 1)
$$

We can write

$$
P(L \le \mu \le U) = 1 - \alpha, \quad 0 \le \alpha \le 1
$$

as

$$
P(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}) = 1 - \alpha, \quad 0 \le \alpha \le 1
$$

$$
P(\bar{X} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu \le \bar{X} + z_{\alpha/2}\sigma/\sqrt{n}) = 1 - \alpha
$$

This is a random interval because the end-points

$$
\bar{X} \pm Z_{\alpha/2} \sigma / \sqrt{n}
$$

involve the random variable \bar{X} .

If \bar{x} is the sample mean of a random sample of size *n* from a Normal population with known variance σ^2 , a 100 $(1-\alpha)\%$ CI on μ is given by

$$
\bar{x} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu \le \bar{x} + z_{\alpha/2}\sigma/\sqrt{n}
$$

where $z_{\alpha/2}$ is the upper $100\alpha/2$ percentage point of the standard normal distribution. Z-scores for commonly used confidence intervals: Confidence level and Z score

Interpreting a Confidence Interval

Say, the 95% CI for the mean boiling temperature of a certain liquid is $102.3 \leq \mu \leq 104.2$. Does it mean that μ is within this interval with probability 0.95?

- In the true value of μ is unknown and the obtained CI above might be either correct or wrong
- \triangleright a CI is a random interval because in the probability statement defining the endpoints of the interval L and U are random variables
- **► the correct interpretation of a 100(1** α **)% CI depends on the relative frequency** view of probability
- \triangleright if an infinite number of random samples are collected and a 100(1 − α)% CI for μ is computed from each sample, $100(1 - \alpha)\%$ of these intervals will contain the true value of *µ*

Interpreting a Confidence Interval

Repeated construction of a confidence interval for *µ*:

- In the dots at the center of the intervals indicate the point estimate of μ (that is, \bar{x})
- \triangleright one of the intervals fails to contain the true value of μ
- If this were a 95% confidence interval, in the long run only 5% of the intervals would fail to contain *µ*.
- In practice, we obtain only one random sample and calculate one confidence interval
- \triangleright We can't talk about the probability that the given CI estimate contains μ
- \triangleright The appropriate statement is that the observed interval $[I, u]$ brackets the true value of μ with confidence $100(1 - \alpha)$.

Suppose a number of weekly hours of internet use among 9-11 y.o. Australian children is normaly distributed with variance of 36 hours. Suppose the mean number of hours of internet use per week is 5*.*75 hours obtained from the data of 2500 children. Calculate a 95% confidence interval for the mean number of hours of internet use per week.

95%
$$
z_{0.05/2} = 1.96
$$

 $\bar{x} = 5.75$, $n = 2500$, $\sigma^2 = 36$

The 95% CI is

$$
\bar{x} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu \le \bar{x} + z_{\alpha/2}\sigma/\sqrt{n}
$$

5.75 - (1.96)6/ $\sqrt{2500} \le \mu \le 5.75 + (1.96)6/\sqrt{2500}$
[5.515, 5.985] hours per week

Confidence Level and Precision of Estimation

The 99% CI is longer than the 95% CI \rightarrow we have a higher level of confidence in the 99% confidence interval

- For a fixed sample size n and standard deviation σ , the higher the confidence level, the longer the resulting CI
- \triangleright The length of a confidence interval is a measure of the precision of estimation
- \triangleright Obtain a confidence interval that is short enough for decision-making purposes
- \triangleright Choose the sample size n to be large enough to give a CI of specified length or precision with prescribed confidence.

If \bar{x} is used as an estimate of μ , we can be $100(1 - \alpha)\%$ confident that the error $|\bar{x} - \mu|$ will not exceed a specified amount E when the sample size is

$$
n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2
$$

if n is not an integer, it must be rounded up.

Large-Sample Confidence Interval

When n is large ($n > 30$, better to have $n > 40$), the quantity

$$
\frac{\bar{X} - \mu}{S/\sqrt{n}}
$$

has an approximate standard normal distribution. Consequently,

$$
\bar{x} - z_{\alpha/2} s / \sqrt{n} \le \mu \le \bar{x} + z_{\alpha/2} s / \sqrt{n}
$$

is a large-sample confidence interval for μ , with confidence level of approximately $100(1 - \alpha)\%$

Large-Sample Confidence Interval. Example

Mercury contamination in a certain fish. Note that the distribution of mercury concentration is not normal. A sample of fish was selected from 53 Florida lakes, and mercury concentration in the muscle tissue was measured (ppm):

$$
n=53>40, \bar{x}=0.525, s=0.3486
$$

The approximate 95% CI on *µ* is:

$$
\bar{x} - z_{\alpha/2} s / \sqrt{n} \le \mu \le \bar{x} + z_{\alpha/2} s / \sqrt{n}
$$

0*.*525 − 1*.*96(0*.*3486)*/* √ $53 \leq \mu \leq 0.525 + 1.96 (0.3486) / 1$ √ 53

 $0.4311 \leq \mu \leq 0.6189$

If \bar{x} is the sample mean of a random sample of size n from a Normal population with unknown variance σ^2 . The random variable

$$
T = \frac{\bar{X} - \mu}{S/\sqrt{n}}
$$

has a t distribution with n - 1 degrees of freedom.

The general appearance of the t distribution is similar to the standard normal distribution in that both distributions are symmetric and unimodal, and the maximum ordinate value is reached when the mean $\mu = 0$. The t distribution has heavier tails than the normal; that is, it has more probability in the tails than does the normal distribution.

If \bar{x} and s are the mean and standard deviation of a random sample of size n from a Normal population with unknown variance σ^2 , a 100 $(1-\alpha)\%$ CI on μ is given by

$$
\bar{x} - t_{\alpha/2, n-1} s/\sqrt{n} \le \mu \le \bar{x} + t_{\alpha/2, n-1} s/\sqrt{n}
$$

where $t_{\alpha/2,n-1}$ is the upper $100\alpha/2$ percentage point of the t distribution with $n-1$ degrees of freedom.

t*α/*2*,*n−¹ depends on desired confidence level and degrees of freedom. R (90% confidence level, sample of size $n=20$): $\frac{\text{gt}(1-0.10)}{2}$, 20-1) = 1.729 A farmer weighs 10 randomly chosen watermelons from his farm. Data $\bar{x} = 9.26$ and $s = 1.99$. Assuming that the weight is normally distributed with mean μ and variance σ^2 , find a 95% confidence interval for $\mu.$

R (95% confidence level, sample of size n=10): $gt(1-0.05/2, 10-1) = 2.262$

$$
\bar{x} - t_{\alpha/2, n-1} s / \sqrt{n} \le \mu \le \bar{x} + t_{\alpha/2, n-1} s / \sqrt{n}
$$

9.26 - 2.262(1.99)/ $\sqrt{10} \le \mu \le 9.26 + 2.262(1.99) / \sqrt{10}$

[7.84, 10.68] is a 95% confidence interval for μ .

The Pivotal Method

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with a parameter θ that is to be estimated. The random variable Q is said to be a pivot or a pivotal quantity, if it has the following properties:

It is a function of the observed data $X_1, X_2, ..., X_n$ and the unknown parameter θ but it does not depend on any other unknown parameters:

$$
Q = Q(X_1, X_2, ..., X_n; \theta)
$$

I The probability distribution of Q does not depend on θ or any other unknown parameters.

Pivotal quantities allow the construction of exact confidence intervals, meaning they have exactly the stated confidence level, as opposed to so-called 'large-sample' (asymptotic) confidence intervals.

- \triangleright an exact CI is valid for any sample size
- \triangleright an asymptotic confidence interval is valid only for sufficiently large sample size

Exact intervals. The Pivotal Method

- Find a pivotal quantity $Q = Q(X_1, X_2, ..., X_n; \theta)$
- \triangleright Find upper and lower confidence limits on the pivotal quantity, that is, I and u such that

$$
P(q_1 \leq Q \leq q_2) = 1 - \alpha, \quad 0 \leq \alpha \leq 1
$$

In The constants q_1 and q_2 are called critical values. They are obtained from a table for the distribution of the pivotal quantity or from a computer program.

The example of a pivotal quantity is

$$
Q = Q(X_1, X_2, ..., X_n; \theta) = \frac{\bar{X} - \mu}{S/\sqrt{n}}
$$

$$
P(q_1 \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le q_2) = 0.95
$$

which is equivalent to

$$
P(\bar{X} - q_1 \frac{S}{\sqrt{n}} \le \mu \le \bar{X} + q_2 \frac{S}{\sqrt{n}}) = 0.95
$$

The Pivotal Method. Exponential

Suppose $X_1, X_2, ..., X_n$ are i.i.d. Exponential(λ). Then

$$
\sum_{i=1}^n X_i \sim \text{Gamma}(n, \lambda)
$$

It can be shown that

 $\lambda \bar{X} \sim$ Gamma (n, n)

Since the distribution here does not depend on the parameter *λ*, we see that

$$
Q=\lambda\bar{X}
$$

is a pivotal quantity.

We choose q_1 and q_2 to be the $\alpha/2$ and $1 - \alpha/2$ quantiles of the distribution of the pivotal quantity. In R (alpha = 0.05 corresponds to the confidence level 95%):

> $qgamma(alpha/2, shape = n, rate = n)$ $qgamma(1 - alpha/2, shape = n, rate = n)$

Example: $\bar{x} = 20$, $n = 10$, the 95% CI is 0.479 $\leq \frac{\lambda}{\bar{x}} \leq 1.708$.

The Pivotal Method. Uniform

Suppose $X_1, X_2, ..., X_n$ are i.i.d. Uniform $(0, \theta)$. Then X_i

$$
\frac{\lambda_i}{\theta} \sim \text{Uniform}(0, 1)
$$

It can be shown that

$$
max\left(\frac{X_1}{\theta},\frac{X_2}{\theta},...,\frac{X_n}{\theta}\right) \sim Uniform(0,1)
$$

Since the distribution here does not depend on the parameter *θ*, we see that

$$
Q = \max\left(\frac{X_1}{\theta}, \frac{X_2}{\theta}, ..., \frac{X_n}{\theta}\right) = \frac{X_{(n)}}{\theta}
$$

is a pivotal quantity.

The Pivotal Method. Uniform

To find 95% CI, we need to choose q_1 and q_2 such that

$$
P(q_1 \le Q = \frac{X_{(n)}}{\theta} \le q_2) = 0.95
$$

$$
P(q_1 \le \frac{X_{(n)}}{\theta} \le q_2) = \int_{q_1}^{q_2} n y^{n-1} dy = q_2^n - q_1^n = 0.95
$$

So $\mathit{q}_{2}^{n}-\mathit{q}_{1}^{n}=0.95$ must hold and $0<\mathit{q}_{1},\mathit{q}_{2}<1$ because $\mathit{X}_{(n)}\sim\mathit{Uniform}(0,1)$

$$
P\left(\frac{X_{(n)}}{q_2} \leq \theta \leq \frac{X_{(n)}}{q_1}\right) = 0.95
$$

The length of the interval is $\mathcal{X}_{(n)}$ $\frac{1}{1}$ $\frac{1}{q_1}-\frac{1}{q_2}$ q_2). We can do anything with $X_{(n)}$ but we can minimize $\begin{pmatrix} 1 \\ \frac{1}{\alpha} \end{pmatrix}$ $\frac{1}{q_1}-\frac{1}{q_2}$ q_2 $\Big)$ subject to the constraint $q_2^{\prime\prime} - q_1^{\prime\prime} = 0.95$. The solution is

 $q_2 = 1, q_1 = 0.05^{1/n}$. Among 95% CIs the shortest one is $\theta \in [X_{(n)}, X_{(n)}/0.05^{1/n}]$.

Confidence Intervals for the Variance of Normal Random Variables

Suppose $X_1, X_2, ..., X_n$ are i.i.d. $\mathcal{N}ormal(\mu, \sigma^2).$ Then find an interval estimator for $\sigma^2.$ Assume that μ is also unknown.

The random variable Q

$$
Q = \frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2
$$

has a chi-squared distribution with n-1 degrees of freedom, i.e., $Q \sim \chi^2_{n-1}$. A chi-squared distribution is a special case of Gamma distribution, $\chi^2_n \sim \textit{Gamma}(n/2,2)$. Q is a pivotal quantity because its distribution does not depend on σ^2 or any other unknown parameters. The $100(1 - \alpha)$ %CI can be found by solving

$$
P(\chi^2_{1-\alpha/2,n-1}\leq Q\leq \chi^2_{\alpha/2,n-1})=1-\alpha
$$

$$
P\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \leq \sigma^2 \leq \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right) = 1 - \alpha
$$

One-Sided Confidence Bounds on the Variance

Two-sided: $\frac{(n-1)S^2}{\sqrt{2}}$ $\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \leq \sigma^2 \leq \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$ Two-sided: $\chi^2_{\alpha/2,n-1} \geq 0 \geq \chi^2_{1-\alpha/2,n-1}$
One-sided confidence bounds on σ^2 are

$$
\frac{(n-1)S^2}{\chi^2_{\alpha,n-1}} \leq \sigma^2
$$

$$
\sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha,n-1}}
$$

One-Sided Confidence Bounds on the Variance

An automatic filling machine is used to fill bottles with liquid detergent. A random sample of 20 bottles results in a sample variance of fill volume of $s^2=$ 0.01532 (fluid ounce). If the variance of fill volume is too large, an unacceptable proportion of bottles will be under- or overfilled. We will assume that the fill volume is approximately normally distributed. A 95% upper confidence bound is found from

$$
\sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha,n-1}}
$$

$$
\sigma^2 \le \frac{(19)0.01532}{10.117} = 0.0287
$$

The standard deviation is $\sigma = 0.17$. Therefore, at the 95% level of confidence, the data indicate that the process standard deviation could be as large as 0.17 fluid ounce. In R: gchisq(.95, df=19, lower.tail=FALSE) = 10.117 gives the right tail probability.