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Method of Maximum Likelihood

The maximum likelihood estimator (MLE) is the parameter point for which the
observed sample is most likely.

I the range of the MLE coincides with the range of the parameter
I drawbacks associated with finding the maximum of a function

I verifying that global maximum has been found
I how sensitive is the estimate to small changes in the data? can slightly different

samples produce a vastly different ML estimates?



Method of Maximum Likelihood. Intuition
I have a bag that contains 3 balls. Each ball is either red or blue, but I have no
information in addition to this. Thus, the number of blue balls, call it θ, might be
0,1,2,3. I am allowed to choose 4 balls at random from the bag with replacement.
We define the random variables X1,X2,X3,X4 as indicator functions: 1 if ith choosen
ball is blue and 0 if not.
Note that Xi s are i.i.d. and Xi ∼ Bernoulli(θ/3), the pmf is

θ/3 x = 1

1− θ/3 x = 0

After doing my experiment, I observe the following values for Xi s:

x1 = 1, x2 = 0, x3 = 1, x4 = 1

I observe 3 blue balls and 1 red ball.
I For each possible value of θ, find the probability of the observed sample
I For which value of θ is the probability of the observed sample is the largest?



Method of Maximum Likelihood. Intuition
We define the random variables X1,X2,X3,X4 as indicator functions: 1 if ith choosen
ball is blue and 0 if not. Note that Xi s are i.i.d. and Xi ∼ Bernoulli(θ/3):

θ/3 x = 1

1− θ/3 x = 0
After doing my experiment, I observe the following values for Xi s:

x1 = 1, x2 = 0, x3 = 1, x4 = 1

I observe 3 blue balls and 1 red ball.
I For each possible value of θ, find the probability of the observed sample
I For which value of θ is the probability of the observed sample is the largest?

R.v.s are independent so

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3)p(x4)

p(1, 0, 1, 1; θ) = (θ/3)3(1− θ/3)
where θ is the number of blue balls in the bag.



Method of Maximum Likelihood. Intuition

R.v.s are independent so

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3)p(x4)

p(1, 0, 1, 1; θ) = (θ/3)3(1− θ/3)

where θ is the number of blue balls in the bag. For θ = 0, 1, 2, 3 the probabilities
obtained from the joint pmf are 0, 0.0247, 0.0988, 0.

I Why the probability of observed sample for θ = 0 and θ = 3 is zero?
I For which value of θ is the probability of the observed sample is the largest?



Method of Maximum Likelihood. Intuition

R.v.s are independent so

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3)p(x4)

p(1, 0, 1, 1; θ) = (θ/3)3(1− θ/3)

where θ is the number of blue balls in the bag. For θ = 0, 1, 2, 3 the probabilities
obtained from the joint pmf are 0, 0.0247, 0.0988, 0.

I For which value of θ is the probability of the observed sample is the largest?
I The observed data (1,0,1,1) is most likely to occur for θ = 2.
I θ̂ = 2 is the maximum likelihood estimate (MLE) of θ: the true number of blue

balls in the bag out of total 3 balls.



Maximum Likelihood Estimator
Suppose that X1, ...,Xn are i.i.d. random variables with probability distribution f (x ; θ)
where θ is a single unknown parameter. Let x1, x2, . . . , xn be the obserbed values in a
random sample size n. Then the likelihood function of the sample is

L(θ) = f (x1; θ) · f (x2; θ) · · · · · f (xn; θ).

I Note that likelihood function is now a funciton of only the unknown parameter θ
I The maximum likelihood estimator (MLE) of θ is the value of θ that maximizes

the likelihood function L(θ)
I In the case of a discrete random variable: the likelihood function of the sample

L(θ) is just a probability

P(X1 = x1,X2 = x2, . . .Xn = xn).

I In a discrete case, the MLE is an estimator that maximizes the probability of
occurance of the sample values.



MLE. Bernoulli Example
Suppose that an experiment consists of n = 5 independent Bernoulli trials each having
probability of success p. Let X be the total number of successes in the trials, so that
X ∼ Bin(5, p). If the outcome is X = 3, the likelihood

L(p; x) = n!
x !(n − x)!px (1− p)n−x

= 5!
5!(5− 3)!p3(1− p)5−3

d log L(p; x)
dp = 3p2 − 8p3 + 5p4

3p2 − 8p3 + 5p4 = 0

p̂ = 0.6

If we observe X=3 successes in n=5 trials, a reasonable estimate of the long-run
proportion of successes p is 0.6.



MLE. Poisson Example

P(X = x) = λxe−λ
x ! .

For X1,X2, . . . ,Xn iid Poisson random variables with have a joint frequency function
that is a product of the marginal frequency functions, the log likelihood will thus be:

log L(λ) =
n∑

i=1
(Xi log λ− λ− log Xi !)

= log λ
n∑

i=1
Xi log λ− nλ−

n∑
i=1

log Xi !.

We need to find the maximum by finding the derivative and set it to 0:

λ̂ = X̄



MLE. Normal Example
Let X be normally distributed with unknown µ and known variance σ2. The likelihood
function of a random sample of size n, say X1,X2, . . . ,Xn is

L(µ) =
n∏

i=1

1
σ
√

2π
e

−(xi −µ)2

2σ2 = 1
(2πσ2)n/2 e−

1
2σ2
∑n

i=1(xi−µ)2
.

Now log likelihood will thus be

log L(µ) = −(n/2) log(2πσ2)− (2σ2)−1
n∑

i=1
(xi − µ)2

with the derivative
d log L(µ)

dµ = (σ2)−1
n∑

i=1
(xi − µ).

Equating derivative to 0 and solving for µ yields

µ̂ =
∑2

i=1 Xi
n = X .

Conclusion: The sample mean is the maximum likelihood estimator of µ. Notice that
this is identical to the moment estimator.



MLE. Exponential Example
Let X be exponentially distributed with parameter λ. The likelihood function of a
random sample of size n, say X1,X2,X3, . . . ,Xn, is

L(λ) =
n∏

i=1
λe−λxi = λne−λ

∑n
i=1xi .

The log likelihood is

log L(λ) = n log λ− λ
n∑

i=1
xi (1)

and its derivative is
d log L(λ)

dλ = n
λ
−

n∑
i=1

xi .

Equating derivative to 0 and solving for λ yields

λ̂ = n/
n∑

i=1
Xi = 1/X .

Conclusion: The reciprocal of the sample mean is the maximum likelihood estimator of
λ. Notice that this is identical to the moment estimator.



Log likelihood for the exponential distribution. Example



Properties of MLE

Under very general and not restrictive conditions when the sample size n is large and if
Θ̂ is the MLE of the parameter θ.
(1) Θ̂ is an approximately unbiased estimator for θ: E (Θ̂) ' θ.
(2) The variance of Θ̂ is nearly as small as the variance that could be obtained with

any other estimator.
(3) Θ̂ has an approximate normal distribution.



Complications in using Maximum Likelihood Estimation

I It is not always easy to maximize the likelihood function because the equations
obtained from dL(θ)/dθ may be difficult to solve. Furthermore, it may not always
be possible to use calculus methods directly to determine maximum L(θ).

I Uniform distribution MLE. Let X be uniformly distributed on the interval [0, a].
Because the density function is f (x) = 1/a for 0 ≤ x ≤ a and zero otherwise, the
likelihood function of a random sample of size n is

L(a) =
n∏

i=1

1
a = 1

an ,

for 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ a, . . . , 0 ≤ xn ≤ a.
We could maximize L(a) by setting â equal to the smallest value it could logically
take on, which is max(xi ). This is because a ≥ x1, a ≥ x2, ... for all x, so I can
write a ≥ max(x1, x2, ...)



Uniform MLE



MLE. Gamma Example
Let X1,X2, . . . ,Xn be a random sample from the gamma distribution. The log
likelihood function is

log L(r , λ) = log
( n∏

i=1

λr x r−1
i e−λxi

Γ(r)

)

= nr log(λ) + (r − 1)
n∑

i=1
log(xi )− n log[Γ(r)]− λ

n∑
i=1

xi

with partial derivatives
∂ log L(r , λ)

∂r = n log(λ) +
n∑

i=1
log(xi )− nΓ′(r)

Γ(r) ,
∂ log L(r , λ)

∂λ
= nr

λ
−

n∑
i=1

xi .

By equating these to 0 we get the equations that must be solved to find the maximum
likelihood estimators r and λ:

λ̂ = r̂
x̄ , n log(λ̂) +

n∑
i=1

log(xi ) = nΓ′(r̂)
Γ(r̂) . (2)

There is no closed form solution to these equations.


