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Statistical Inference

I A random sample is collected on a population to draw conclusions, or make
statistical inferences, about the population.

I We choose a random sample of n members of the population:
I a random sample consists of n independent r.v.s X1,X2, ...,Xn
I every Xi has the same probability distribution
I the r.v.s are independent and identically distributed (i.i.d.) if each random variable

has the same probability distribution as the others and all are independent.
I We use the observed sample values to estimate characteristics/parameters, like

the mean or variance, of the distribution.



Statistics

A statistic is a random variable whose value can be be computed from the values of
the random sample X1,X2, ...,Xn.
Examples of statistics of interest:

I sample sum
∑n

i=1 Xi
I sample mean

∑n
i=1 Xi/n

I
∑n

i=1 X 2
i

I min Xi
I max Xi



Point estimators

Let θ be a parameter of the distribution of X:
I a statistic used to estimate θ is called an estimator, and is denoted by θ̂
I an estimate is a numerical value of an estimator for a particular collection of

observed values of a random sample
Important: an estimator is a random variable, and an estimate is a number.
An estimator is unbiased (it is fluctuates around the right value) if

E (θ̂) = θ

The bias of the estimator is E (θ̂)− θ



Sample mean X̄

I The sample mean X̄ =
∑n

i=1 Xi/n is a point estimate for the population mean µ
I Let X1, ...,Xn be a random sample of size n from a distribution with mean µ, then

the statistic X̄ is an unbiased estimator for µ:

E (X̄ ) = E (
n∑

i=1
Xi/n) = 1

nE (
n∑

i=1
Xi ) = 1

n

n∑
i=1

µ = µ

µ̂ = X̄



Sample mean X̄

I A desirable property of an estimator is that it has small variance for large sample
sizes to ensure that estimates will be precise with large probability.

I Let X̄ be the sample mean based on a random sample of size n from a
distribution with mean µ and variance σ2. Then, the variance is

Var(X̄ ) = σ2

n

the larger the sample size, the larger the probability that our estimates are close
to the true mean µ.

I The standard error of the sample mean is
√

Var(X̄ ) = σ/
√

n.
I The estimated standard error of X̄ when σ is unknown would be

σ̂X̄ = S/
√

n



Sample variance

The statistic
S2 =

∑n
i=1(Xi − X̄ )

n − 1 =
∑n

i=1 X 2
i − nX̄ 2

n − 1
is the sample variance. S2 is an unbiased estimator for σ2:

Var(S2) = σ2



The Mean Squared Error

I In cases when a biased estimator used, the mean squared error (MSE) of the
estimator can be important

MSE (θ̂) = E (θ̂ − θ)2

MSE (θ̂) = Var(θ̂) + (bias)2

I MSE is important criterion for comparing two estimators
I the estimator with the smaller MSE is more efficient
I sometimes biased estimators are preferable to unbiased estimators because they

have smaller mean squared error
I we may be able to reduce the variance of the estimator considerably by

introducing a relatively small amount of bias.



The Mean Squared Error
I Sometimes biased estimators are preferable to unbiased estimators because they

have smaller mean squared error
I We may be able to reduce the variance of the estimator considerably by

introducing a relatively small amount of bias
I In figure: θ̂1 is a biased estimator of true value θ, whereas θ̂2 is an unbiased

estimator
I An estimate based on θ̂1 would more likely be close to the true value of θ than

would an estimate based on θ̂2



The law of large numbers (LLN)

The LLN states that if you repeat an experiment independently a large number of
times and average the result, what you obtain should be close to the expected value.

I Let X1,X2, ...,Xn be i.i.d. r.v.s with a finite expected value E (Xi ) = µ, then for
any ε > 0, the weak law of large numbers (WLLN) states that the sample average
converges in probability towards the expected value

X̄n
P−→ µ, n→∞

lim
n→∞

P(|X̄n − µ| > ε) = 0



The Sampling Distribution

The distribution of the random variable X̄ is called the sampling distribution of X̄
I there is randomness in the X̄ value we get from a random sample because of

sampling variability
I For a random sample X1,X2, ...,Xn drawn from any distribution with mean

E (Xi ) = µ and variance Var(Xi ) = σ2, we have

E (X̄ ) = µ and Var(X̄ ) = σ2

n

I What is the probability distribution of X̄?



The Sampling Distribution of X̄

If the n r.v.s X1,X2, ...,Xn are drawn from a Normal distribution, each
Xi ∼ Normal(µ, σ2), then

X̄ ∼ Normal
(
µ,
σ2

n

)



The central limit theorem (CLT)
What is the shape of the sampling distribution of sample means when the population
distribution isn’t Normal?
For i.i.d. r.v.s X1,X2, ...,Xn with finite expected value E (Xi ) = µ and variance
Var(Xi ) = σ2 the sample mean is approximately normal

X̄ ∼ Normal
(
µ,
σ2

n

)
, n→∞

The random variable
Zn = X̄ − µ

σ/
√

n
converges in distribution to the standard normal random variable as n goes to infinity:

lim
n→∞

P(Zn ≤ x) = Φ(x)

Φ(x) is the standard normal cdf
I for the CLT is that it does not matter what the distribution of the Xi is
I the distribution can be discrete, continuous, or mixed random variables.



The Sampling Distribution of average scores from throwing dice



The Sampling Distribution of sample proportion



Example
I The shape of the pdf gets closer to the normal pdf as n increases:



CLT



The service time

A bank teller serves customers standing in the queue one by one. Suppose that the
service time Xi for customer i has mean E (Xi ) = 2 minutes and Var(Xi ) = 1. We
assume that service times for different bank customers are independent. Let Y be the
total time the bank teller spends serving 50 customers. Find P(90 < Y < 110)

Y = X1 + X2 + ...+ Xn

P(90 < Y < 110) = P
(

90− nµ√
nσ <

Y − nµ√
nσ <

110− nµ√
nσ

)

By the CLT, Y−nµ√
nσ

is approximately standard normal, so

P(90 < Y < 110) = P
(

90− 50(2)√
50

<
Y − nµ√

nσ <
110− 50(2)√

50

)
= Φ(

√
2)−Φ(−

√
2) = 0.84



How many sandwiches?
You have invited 64 guests to a party. You need to make sandwiches for the guests.
You believe that a guest might need 0, 1, or 2 sandwiches with probabilities 0.25, 0.5,
and 0.25, respectively. You assume that the number of sandwiches each guest needs is
independent from other guests. How many sandwiches should you make so that you
are 95% sure that there is no shortage?

Let Xi be the number of sandwiches that the ith person needs, and let
Y = X1 + X2 + ...+ X64. Need to find P(Y ≤ y) = 0.95.

I E (Xi ) = 1, E (X 2
i ) = 1.5

I Var(Xi ) = E (X 2
i )− (E [Xi ])2 = 0.5, σXi =

√
Var(Xi ) = 1/

√
2

I EY = 64(1) = 64, Var(Y ) = 64(0.5) = 32, σY = 4
√

2
I Applying the CLT to find y :

0.95 = P(Y ≤ y) = P
(

Y − nµ√
nσ <

y − 64
4
√

2

)
= Φ(y − 64

4
√

2
)

y = 73.3
If you make 74 sandwiches, you are 95% sure that there is no shortage.


