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Hierarchical models

Complicated process may be modeled by a sequence of relatively simple models placed
in a hierarchy

Binomial-Poisson hierarchy. An insect lays a large number of eggs, each surviving with
probability p. On the average, how many eggs will survive? Assume that each egg’s
survival is independent.

I Let Y be the number of eggs and X be the number of survivors (X and Y are
random variables)

I First model the distribution of Y . Then model the distribution of X given Y
I the large number of eggs laid is often modeled with Poisson distribution,

Y ∼ Poisson(λ), where λ > 0 is the average number of eggs laid.
I given Y , the number of survivors can be modeled as X |Y ∼ Binomial(Y , p)



Hierarchical models
Binomial-Poisson hierarchy. An insect lays a large number of eggs, each surviving with
probability p. On the average, how many eggs will survive? Assume that each egg’s
survival is independent.

X |Y ∼ Binomial(Y , p)
Y ∼ Poisson(λ)

is a hierarchical model. Find pdf of X and E (X ).

Given that the conditional probability is 0 if y < x , the random variable X has the
distribution given by
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thus X ∼ Poisson(λp).



Hierarchical models

If X and Y are any two r.v.s, then

E (X ) = E [E (X |Y )]

Var(X ) = E [Var(X |Y )] + Var [E (X |Y )]

In our example,
E (X ) = E [E (X |Y )] = E [Yp] = pE (Y ) = pλ

which is the expected value for Poisson(λp).



Hierarchical models
I Hierarchical models can have more than two stages.
I The random variables in hierarchical models may be all discrete, all continuous, or

some discrete and some continuous.
Beta-Binomial hierarchy One generalization of the binomial distribution is to allow the
success probability to vary according to a distribution from trial to trial. A standard
model for this situation is

Xi |Pi ∼ Binomial(ni ,Pi )
Pi ∼ Beta(α, β), i = 1, . . . , n

I a certain machine produces defective and nondefective parts, but we do not know
what proportion of defectives we would find among all parts that could be
produced by the machine. X |P ∼ Binomial(n,P). We might believe that P has a
continuous distribution.

I when measuring the success of a drug on patients, it is better not to assume that
the success probabilities are constant because the patients are different.



Multinomial distribution

I The Multinomial distribution is a generalization of the Binomial
I Whereas the Binomial distribution counts the successes in a fixed number of trials

that can only be categorized as success or failure
I The Multinomial distribution keeps track of trials whose outcomes can fall into

multiple categories: such as excellent, adequate, poor; or red, yellow, green, blue.



Multinomial distribution. Definition

I Each of n objects is independently placed into one of k categories
I An object is placed into category j with probability pj , where

∑k
j=1 pj = 1

I Let X1 be the number of objects in category 1, X2 the number of objects in
category 2, etc., so that X1 + ...+ Xk = n

I Then r.v.s X1,X2, ... have the Multinomial distribution with parameters n and
p = (p1, ..., pk) and the joint probability mass function is

P(X1 = n1,X2 = n2, ...,Xk = nk) = n!
n1!n2!...n3!pn1

1 pn2
2 ...p

nk
k

for n1, n2, ..., nk satisfying n1 + n2 + ...+ nk = n.



Example
Of 20 graduating students, how many ways are there for 12 to be employed in a job
related to their field of study, 6 to be employed in a job unrelated to their field of
study, and 2 unemployed?(

20
12

)(
8
6

)(
2
2

)
= 20!

12!6!2! = 3, 527, 160

What if now probabilities are different
I probability of job related to field of study is 0.70
I probability of job unrelated to field of study is 0.20
I probability of no job is 0.10

Then this probability is (using multinomial joint pmf)

20!
12!6!2!0.70120.2060.102 = 0.03

in R: dmultinom(c(12, 6, 2), prob = c(.7, .2, .1))



Example

I Given that a student finds a job, what is the probability that the job will be in the
student’s field of study?

P(Field |Job) = P(Field , Job)
P(Job) = 0.7

0.7 + 0.2 = 7
9 = 0.78

I Suppose we choose 30 students at random from those who found jobs. What is
the probability that exactly s of them will be employed in their field of study, for
s = 0, ..., 30?

P(s|Job) =
(

30
s

)(
7
9

)s(
1− 7

9

)30−s



Multivariate Normal
The Multivariate Normal (MVN) is a continuous multivariate distribution that
generalizes the Normal distribution into higher dimensions

I The r.v.s X1,X2, ... have the MVN distribution if every linear combination of the
Xj has a Normal distribution. That is, we require

a1X1 + ...+ akXk

to have a Normal distribution for any constants a1, ..., ak
I An important special case is k = 2; this distribution is called the Bivariate Normal
I The joint MVN depends on means and covariance matrix that gives the

covariance between each pair of r.v.s
I If X1,X2, ... have the Multivariate Normal distribution, then the marginal

distribution of each Xj is Normal
I The converse is false: it is possible to have Normally distributed r.v.s X1, ...,Xk

such that (X1, ...,Xk) is not Multivariate Normal



Multivariate Normal. Application

I The multivariate normal distribution (MVN) is useful in analyzing the relationship
between multiple normally distributed variables

I MVN has heavy application to biology and economics where the relationship
between approximately-normal variables is of great interest

I MVN is used to learn the statistics of the local features (for example, in detecting
faces in images)



Joint pdfs of two Bivariate Normal distributions
I If (X ,Y ) is Bivariate Normal and Corr(X ,Y ) = 0, then X and Y are independent.
I X and Y are marginally Normal
I In the figure, both X and Y are N(0, 1)
I On the left, X and Y are uncorrelated, so the level curves of the joint PDF are

circles
I On the right, X and Y have a correlation of 0.75, so the level curves are

ellipsoidal, reflecting the fact that Y tends to be large when X is large


