Continuous Joint Distributions. Covariance and correlation

Anastasiia Kim

April 8, 2020

Joint Probability Density Function

A joint probability density function $f(x, y)$ for the continuous random variables X and Y for any region R of 2D space is

$$
P((X, Y) \in R) = \int \int_R f(x, y) \, dx \, dy
$$

$$
\blacktriangleright \ \ f(x,y) \geq 0 \ \text{for all } x,y \text{ and } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1
$$

 \blacktriangleright Marginal pdfs

$$
f(x) = \int_{-\infty}^{\infty} f(x, y) dy
$$

$$
f(y) = \int_{-\infty}^{\infty} f(x, y) dx
$$

Example

Figure 1: Joint pmf (discrete case) and Joint pdf (continuous case)

Joint Probability Density Function. Example

Given that $f(x,y) = c x^2 y$ for $0 \le y \le x \le 1$ and 0 otherwise,

 \triangleright the pdf is defined in the region R_{XY}

constant $c = 10$ since

$$
1 = \int_0^1 \int_0^x cx^2 y dy dx = \int_0^1 cx^4 / 2 dx = c / 10
$$

 \blacktriangleright the marginal pdf of Y is

$$
f(y) = \int_{y}^{1} 10x^2 y dx = 10y(1 - y^3)/3
$$

Continuous form of Bayes' rule and the Law of total probability

For continuous r.v.s X and Y,

In The conditional probability density function of Y given $X = x$ is (for $f(x) > 0$):

$$
f_{Y|X}(y|x) = \frac{f(x, y)}{f(x)}
$$

$$
\int f_{Y|X}(y|x)dy = 1
$$

In The continuous form of Bayes' rule is (for $f(x) > 0$):

$$
f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f(y)}{f(x)}
$$

 \triangleright The continuous form of the Law of Total Probability is:

$$
f(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f(y) dy
$$

Independence of continuous r.v.s

Random variables X and Y are independent if for all x and y ,

$$
F(x,y)=F(x)F(y)
$$

If X and Y are continuous with joint pdf this is equivalent to the condition

$$
f(x,y)=f(x)f(y)
$$

for all x, y, and it is also equivalent to the condition (for $f(x) > 0$)

$$
f_{Y|X}(y|x) = f(y)
$$

Example. Exponentials of different rates

Let T_1 be the lifetime of a refrigerator and T_2 be the lifetime of a stove. Let $T_1 \sim$ *Exponential*(λ_1) and $T_2 \sim$ *Exponential*(λ_2) be independent. Find $P(T_1 < T_2)$ the probability that the refrigerator fails before the stove.

Need to integrate the joint pdf of T_1 and T_2 over the appropriate region:

$$
P(T_1 < T_2) = \int_0^\infty \int_0^{t_2} \lambda_1 e^{-\lambda_1 t_1} \lambda_2 e^{-\lambda_2 t_2} dt_1 dt_2 =
$$

$$
\int_0^\infty \left(\int_0^{t_2} \lambda_1 e^{-\lambda_1 t_1} dt_1 \right) \lambda_2 e^{-\lambda_2 t_2} dt_2 = \frac{\lambda_1}{\lambda_1 + \lambda_2}
$$

Since λ_1 and λ_2 are rates, the probability is 0.5 if $\lambda_1 = \lambda_2$. If, for example, refrigerators have twice the failure rate of stoves $\lambda_1 = 2\lambda_2$, then it says that the odds are 2 to 1 in favor of the refrigerator failing first.

Example. Unit circle

Let (X,Y) be a random point in the unit disk (x,y) : $x^2 + y^2 \leq 1$ with joint pdf

$$
f(x,y) = \frac{1}{\pi}
$$
, if $x^2 + y^2 \le 1$

and 0 otherwise.

 \triangleright Note that X and Y are NOT independent

$$
f(0.9,0.9) = 0 \neq f(x = 0.9) f(y = 0.9)
$$

Example. Unit circle

 \blacktriangleright The marginal distribution of X is

$$
f(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2}{\pi} \sqrt{1-x^2}, \quad -1 \le x \le 1
$$

► By symmetry, $f(y) = \frac{2}{\pi} \sqrt{1 - y^2}$. The conditional distribution of Y given X = x is

$$
f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f(y)}{f(x)} = \frac{1}{2\sqrt{1-x^2}}, \quad -\sqrt{1-x^2} \le y \le \sqrt{1-x^2}
$$

The conditional pdf is not free of x: X and Y are not independent.

Covariance and Correlation

- \triangleright mean and variance provided single-number summaries of the distribution of a single r.v.
- \triangleright covariance is a single-number summary of the joint distribution of two r.v.s.
- \triangleright covariance measures a tendency of two r.v.s to go up or down together, relative to their means
- **Ex** positive covariance between X and Y indicates that when X goes up, Y also tends to go up
- **Example 2** negative covariance indicates that when X goes up, Y tends to go down

Covariance

 \triangleright The covariance between r y s X and Y is

$$
Cov(X, Y) = E[(X – E(X))(Y – E(Y))] = E(XY) – E(X)E(Y)
$$

 \blacktriangleright for discrete r.v.s

$$
E(XY) = \sum \sum xyp(x, y)dxdy
$$

 \triangleright for continuous r.v.s

$$
E(XY) = \int \int xyf(x, y) \, dx \, dy
$$

- Here $g(x, y) = xy$, $E(g(X, Y)) = E(XY)$ can be thought of as the weighted average of $g(x, y)$ for each point in the range of (X, Y)
- In The value of $E(g(X, Y))$ represents the average value of $g(x, y)$ that is expected in a long sequence of repeated trials of the random experiment.

Covariance and Correlation

- \triangleright if X and Y are independent, then their covariance is zero
- \triangleright we say that random variables with zero covariance are uncorrelated
- \triangleright if X and Y are uncorrelated they are not necessary independent Let $X \sim N(0,1)$ and let $Y = X^2$. Then $E(XY) = E(X^3) = 0$ because the odd moments of the standard Normal distribution are equal to 0 by symmetry. Thus X and Y are uncorrelated because

$$
Cov(X, Y) = E[(X – E(X))(Y – E(Y))] = E(XY) – E(X)E(Y) = 0 – 0 = 0
$$

but they are certainly NOT independent: Y is a function of X, so knowing X gives us perfect information about Y.

 \triangleright covariance is a measure of linear association, so r.v.s can be dependent in nonlinear ways and still have zero covariance

Correlation

The correlation between $r \vee s X$ and Y is

$$
Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}
$$

- \triangleright correlation just scales the covariance by the product of the standard deviation of each variable
- \triangleright correlation does not depend on the units of measurement
- it is always between -1 and 1
- \triangleright it is zero for uncorrelated random variables
- \triangleright the correlation is a measure of the linear relationship between random variables
- \triangleright if the correlation between two random variables is zero, we cannot immediately conclude that the r.v.s are independent

Covariance and Correlation

Figure 2: Draws from the joint distribution of (X,Y) under various dependence structures. Bottom left: X and Y are independent, hence uncorrelated. Bottom right: Y is a deterministic function of X $(Y = X^2)$, but X and Y are uncorrelated.

Example. Covariance and Correlation

Figure 3: Joint distribution of discrete r.v.s X and Y

$$
E(XY) = 0 \cdot 0 \cdot 0.2 + 1 \cdot 1 \cdot 0.1 + 1 \cdot 2 \cdot 0.1 + 2 \cdot 1 \cdot 0.1 + 2 \cdot 2 \cdot 0.1 + 3 \cdot 3 \cdot 0.4 = 4.5
$$

\n
$$
E(X) = 0 \cdot 0.2 + 1 \cdot 0.2 + 2 \cdot 0.2 + 3 \cdot 0.4 = 1.8
$$

\n
$$
E(X^{2}) = 0 \cdot 0.2 + 1 \cdot 0.2 + 4 \cdot 0.2 + 9 \cdot 0.4 = 4.6
$$

\n
$$
Var(X) = 4.6 - (1.8)^{2} = 1.36
$$

Example. Covariance and Correlation

Figure 4: Joint distribution of discrete r.v.s X and Y

The marginal probability distribution of Y is the same as for X, so $E(Y) = 1.8$ and $Var(Y) = 1.36$. Covariance and correlation are

$$
Cov(X, Y) = E(XY) - E(X)E(Y) = 4.5 - (1.8)(1.8) = 1.26
$$

$$
Corr(X, Y) = \frac{1.26}{\sqrt{(1.36)(1.36)}} = 0.93
$$