
Homework 6

Stat 345 - Spring 2020

Name:

Problem 1

We load on a plane 100 packages whose weights are independent random variables that are
uniformly distributed between 5 and 50 pounds. What is the probability that the total weight
will exceed 3000 pounds? It is not easy to calculate the cdf of the total weight and the desired
probability, but an approximate answer can be quickly obtained using the central limit
theorem.

The distribution is X1, X2, ..., X100 ∼ Uniform(5, 50) with E(X) = (5 + 50)/2 = 27.5 and
V ar = (50− 5)2/12 = 168.75 based on the formulas for the mean and variance of the uniform
pdf. We need to calculate P (

∑100
i=1Xi > 3000).

P (
100∑
i=1

Xi > 3000) = 1− P (
100∑
i=1

Xi ≤ 3000)

Using the central limit theorem

P (
100∑
i=1

Xi ≤ 3000) = P (Z ≤ 3000− (27.5)(100)√
168.75

√
100

) = P (Z ≤ 1.9245) = Φ(1.9245)

Using R: pnorm(1.9245) = 0.973. And the probability is

P (
100∑
i=1

Xi > 3000) = 1− 0.973 = 0.027.

Problem 2

Let X1, X2, ..., Xn be i.i.d. Gamma random variables with parameters α and λ. The likelihood
function is difficult to differentiate because of the gamma function. Rather than finding the
maximum likelihood estimators, what are the method of moments estimators of both
parameters α and λ?

The expected value and variance for Gamma(α, λ) are

E(X) =
α

λ
, V ar(X) =

α

λ2



To find the method of moments estimators we need to equate population moments to the
sample moments:

E(X) = X̄, E(X2) =
1

n

n∑
i=1

X2
i

α

λ
= X̄,

α

λ2
+

(
α

λ

)2

=
1

n

n∑
i=1

X2
i

α = λX̄,
λX̄

λ2
+

(
λX̄

λ

)2

=
1

n

n∑
i=1

X2
i

α = λX̄,
X̄

λ
+ X̄2 =

1

n

n∑
i=1

X2
i

λ =
X̄

1
n

∑n
i=1X

2
i − X̄2

α =
X̄2

1
n

∑n
i=1X

2
i − X̄2

Problem 3

Let X1, X2, ..., Xn be i.i.d. Geometric(θ), θ = 1, 2, 3, ... random variables.

a) Find the maximum likelihood estimator of θ.

The pmf when Xi ∼ Geometric(θ) is p(x) = (1− θ)x−1θ. The likelihood is given by

L(θ) = p(x1)p(x2)...p(xn) =
n∏

i=1

(1− θ)xi−1θ

The log likelihood can be obtained by taking the natural logarithm of L(θ):

logL(θ) = log

(
n∏

i=1

(1− θ)xi−1θ

)
=

n∑
i=1

log

(
(1− θ)xi−1θ

)

logL(θ) =
n∑

i=1

(xi − 1)log(1− θ) +
n∑

i=1

log(θ)

logL(θ) = log(1− θ)
n∑

i=1

(xi − 1) + nlog(θ)

d logL(θ)

dθ
= −

∑n
i=1(xi − 1)

1− θ
+
n

θ
= −

∑n
i=1 xi − n
1− θ

+
n

θ



∑n
i=1 xi − n
θ − 1

+
n

θ
= 0

θ

(
n∑

i=1

xi − n

)
+ n(θ − 1) = 0

θ

n∑
i=1

xi − nθ + nθ − n = 0

θ
n∑

i=1

xi − nθ + nθ − n = 0

θ
n∑

i=1

xi = n

θ =
n∑n
i=1 xi

θ =
1

x̄

The maximum likelihood estimator of θ is

θ̂ =
1

X̄

b) The nice property of maximum likelihood estimators is the invariance property. If θ̂ is the
MLE of θ, then g(θ̂) is the MLE of g(θ). For example, if I have a random sample from a
Bernoulli distribution Xi ∼ Bernoulli(θ), i = 1, ..., n and I need to find the MLE of the
function of θ, say g(θ) = (1− θ2), then I can first find the MLE of θ which is θ̂ = X̄, and by
the invariance property the MLE of g(θ) is g(θ̂) = 1− θ̂2 = 1− X̄2.

In a certain hard video game a player is confronted with a series of AI opponents and has an θ
probability of defeating each one. Success with any opponent is independent of previous
encounters. Until first win, the player continues to AI contest opponents. Let X denote the
number of opponents contested until the player’s first win. Suppose that data of 10 players
was collected:

7, 4, 3, 1, 12, 10, 2, 1, 4, 6

What is the MLE of the probability that a player contests five or more AI opponents in a
game until the first win?

The probability is

P (X ≥ 5) = 1− P (X = 1)− P (X = 2)− P (X = 3)− P (X = 4)



This is the probability of failure on all of the first four contests (trials). The failures are
independent events, so

P (X ≥ 5) = (1− θ)4

To calculate this probability we need to know θ.

Note that X1, X2, ..., X10 ∼ Geometric(θ). The MLE of θ is θ̂ = 1
X̄

.

From the data

x̄ =
7 + 4 + 3 + 1 + 12 + 10 + 2 + 1 + 4 + 6

10
= 5

Therefore,

θ̂ =
1

x̄
=

1

5
= 0.2

By the invariance property, the MLE of g(θ) = (1− θ) is g(θ̂) = (1− θ̂)4. Since θ̂ = 0.2 the
maximum likelihood estimate of the probability that a player contests five or more AI
opponents in a game until the first win is (1− 0.2)4 = 0.41.

Problem 4

Let X1, X2, ..., Xn be a random sample from a uniform distribution on the interval (0, a).
Recall that the maximum likelihood estimator (MLE) of a is â = max(Xi).

a) Let Y = max(Xi). Use the fact that Y ≤ y if and only if each Xi ≤ y to derive the
cumulative distribution function of Y.

P (Y ≤ y) = P (max(Xi) ≤ y) = P (X1 ≤ y)P (X2 ≤ y) · ... · P (Xn ≤ y) =

(
y − 0

a− 0

)n

=

(
y

a

)n

b) Find the probability density function of Y from cdf.

By taking derivative of cdf with respect to y the pdf is

f(y) =
n

a

(
y

a

)n−1

=
nyn−1

an

c) Use the obtained pdf to show that MLE for a (â = max(Xi)) is biased.

To show that the estimator â is unbiased for a we need to show that

E(â) = a

E(â) = E(max(Xi)) = E(Y ) =

∫ a

0

yf(y)dy =

∫ a

0

y
nyn−1

an
dy =



=

∫ a

0

nyn

an
dy =

n

an

∫ a

0

yndy =
n

an
yn+1

n+ 1

∣∣∣∣a
0

=
n

an
an+1

n+ 1
=

n

n+ 1
a 6= a

d) Say I would like to consider another estimator for a, I will call it b̂ = 2X̄. Is it unbiased
estimator of a (show)? How you can explain someone without calculations why b̂ = 2X̄ is a
reasonable estimator of a?

E(b̂) = E(2X̄) = 2E(X̄) =
2

n

n∑
i=1

E(Xi) =
2

n

n∑
i=1

0 + a

2
=

2

n

na

2
= a

Therefore, b̂ is the unbiased estimator of a.

Even without doing calculations we can conclude that b̂ = 2X̄ is a good estimator of a. The
range of values here is defined on the interval (0, a). We expect the mean of the sample X̄ to
fall close to the midpoint of zero and a, hence 2X̄ should be close to a.

e) Based on the result in (c), I will propose to use unbiased estimator for a instead of
â = max(Xi), say ĉ = n+1

n
max(Xi). Given that the relative efficiency of any two unbiased

estimators b̂, ĉ is the ratio of their variances

V ar(b̂)

V ar(ĉ)
,

explain which of these two unbiased estimators is more efficient. You can obtain the
V ar(ĉ) = V ar(n+1

n
max(Xi)) from V ar(â) = V ar(Y ). The variance of the Y = max(Xi) is

V ar(Y ) =
n

(n+ 1)2(n+ 2)
a2

Then

V ar(ĉ) = V ar(
n+ 1

n
max(Xi)) =

(n+ 1)2

n2
V ar(Y ) =

(n+ 1)2

n2

n

(n+ 1)2(n+ 2)
a2 =

a2

n(n+ 2)

V ar(b̂) = V ar(2X̄) = 22 1

n2

n∑
i=1

V ar(Xi) =
4

n

n∑
i=1

(
(a− 0)2

12

)
=
a2

3n

The relative efficiency is

V ar(b̂)

V ar(ĉ)
=

a2

3n
a2

n(n+2)

=
n+ 2

3

indicating that for n > 1 the ratio is greater than 1. Therefore, ĉ = n+1
n
max(Xi) has a lower

variance than b̂ = 2X̄ and thus, ĉ is more efficient than b̂.


