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In Chapter 18, We Cover …

Conditions for inference in practice

Cautions about confidence intervals

Cautions about significance tests

Planning studies: sample size for 

confidence intervals

Planning studies: the power of a 

statistical test*



z Procedures
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 So far, we have met two procedures for statistical inference. 
When the “simple conditions” are true—the data are an SRS, the 

population has a Normal distribution, and we know the standard 

deviation s of the population—a confidence interval for the mean 
m is

𝑥ҧ ± 𝑧∗ 𝜎
𝑛 ൗ

 To test a hypothesis 𝐻00:  𝜇 =  𝜇0, we use the one-sample 𝑧-
statistic:

 These are called z procedures because they both involve a one-
sample 𝑧-statistic and use the standard Normal distribution.



Conditions for Inference in Practice
 Any confidence interval or significance test can be trusted only under 

specific conditions.

WHERE THE DATA COME FROM MATTERS

 When you use statistical inference, you are acting as if your data are a 

random sample or come from a randomized comparative experiment.

 If your data don’t come from a random sample or randomized 

comparative experiment, your conclusions may be challenged.

 Practical problems such as nonresponse or dropouts from an 

experiment can hinder inference.

 Different methods are needed for different designs.

 There is no cure for fundamental flaws like voluntary response.



Conditions for Inference in Practice

What is the shape of the population 

distribution?

Many of the basic methods of inference are 

designed for Normal populations.

 Fortunately, this condition is less essential than 

where the data come from.

Any inference procedure based on sample 

statistics (like the sample mean, 𝑥ҧ) that are not 

resistant to outliers can be strongly influenced 

by a few extreme observations.



Cautions About Confidence Intervals
 A sampling distribution shows how a statistic varies in repeated random 

sampling.

 This variation causes random sampling error because the statistic 

misses the true parameter by a random amount.

 So the margin of error in a confidence interval ignores everything except 

the sample-to-sample variation due to choosing the sample randomly.

THE MARGIN OF ERROR DOESN'T COVER ALL ERRORS

 The margin of error in a confidence interval covers only random 

sampling errors.

 Practical difficulties such as undercoverage and nonresponse are often 

more serious than random sampling error. The margin of error does not 

take such difficulties into account.



Cautions About Significance Tests
 Significance tests are widely used in most areas of 

statistical work. Some points to keep in mind when you 

use or interpret significance tests are:

 How small a P is convincing?

 The purpose of a test of significance is to describe the 

degree of evidence provided by the sample against the 

null hypothesis. How small a P-value is convincing 

evidence against the null hypothesis depends mainly on 

two circumstances:

 If 𝐻0 represents an assumption that has been believed 

for years, strong evidence (a small P) will be needed.

 If rejecting 𝐻0 means making a costly changeover, you 

need strong evidence.



Cautions About Significance Tests
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 Significance depends on the alternative 

hypothesis.

 The P-value for a one-sided test is one-half the P-value 

for the two-sided test of the same null hypothesis 

based on the same data.

 The evidence against the null hypothesis is stronger 

when the alternative is one-sided because it is 

based on the data plus information about the 

direction of possible deviations from the null. 

 If you lack this added information, always use a two-

sided alternative hypothesis.



Cautions About Significance Tests

SAMPLE SIZE AFFECTS STATISTICAL SIGNIFICANCE

 Because large random samples have small chance 
variation, very small population effects can be highly 
significant if the sample is large.

 Because small random samples have a lot of chance 
variation, even large population effects can fail to be 
significant if the sample is small.

 Statistical significance does not tell us whether an effect is 
large enough to be important. That is, statistical 
significance is not the same as practical significance.

Beware of Multiple Analyses

 The reasoning of statistical significance works well if you 
decide what effect you are seeking, design a study to 
search for it, and use a test of significance to weigh the 
evidence you get.



Planning Studies:

Sample Size for Confidence Intervals
 A wise user of statistics never plans a sample or an experiment 

without also planning the inference. The number of observations 
is a critical part of planning the study.

 The margin of error ME of the confidence interval for the 
population mean 𝜇 is

𝑚 = 𝑧∗
𝜎

𝑛 

 To obtain a desired margin of error 𝑚, put in the value of 𝑧∗ for 
your desired confidence level, and solve for the sample size 𝑛.

SAMPLE SIZE FOR DESIRED MARGIN OF ERROR

 The z confidence interval for the mean of a Normal population 
will have a specified margin of error m when the sample size is



Planning Studies:
the Power of a Statistical Test*

 How large a sample should we take when we plan to 

carry out a test of significance?

 Here are the questions we must answer to decide how 

many observations we need:

 Significance level. How much protection do we want 

against getting a significant result from our sample 

when there really is no effect in the population?

 Effect size. How large an effect in the population is 

important in practice?

 Power. How confident do we want to be that our study 

will detect an effect of the size we think is important?



Planning Studies:

the Power of a Statistical Test*

 The power of a test against a specific alternative is the probability 
that the test will reject 𝐻0 at a chosen significance level α when 

the specified alternative value of the parameter is true.

 Example: a matched-pairs experiment to test for loss of 

sweetness—the bigger the difference, the bigger the loss of 

sweetness.  We know the sweetness loss scores vary from scorer 
to scorer according to a Normal distribution with standard 

deviation about s = 1.  To see if there is a loss in sweetness, we 

test
𝐻0: 𝜇 = 0
𝐻𝑎: 𝜇 > 0

 Will 10 tasters be sufficient for this study?



Planning Studies:

the Power of a Statistical Test*
 Example (cont’d): Will 10 tasters be sufficient for this study, or 

should we use more?
 Significance level. Requiring significance at the 5% level is 

enough protection against declaring there is a loss in sweetness 
when in fact there is no change if we could look at the entire 
population.

 Effect size. A mean sweetness loss of 0.8 point on the 10-point 
scale will be noticed by consumers and so is important in practice.

 Power. We want to be 90% confident that our test will detect a 
mean loss of 0.8 point in the population of all tasters.

 Result (Minitab output, left):  We see that our 
earlier sample of 10 tasters is not large enough to 
be 90% confident of detecting (at the 5% 
significance level) an effect of size 0.8. If we want 
power 90% against effect size 0.8, we need at 
least 14 tasters. The actual power with 14 tasters 
is 0.911247.



Planning Studies:

the Power of a Statistical Test*
 How large a sample should we take when we plan to carry out a 

significance test? The answer depends on what alternative values of 

the parameter are important to detect.

 Here is an overview of influences on “How many observations do I 
need?”

 If you insist on a smaller significance level (such as 1% rather than 

5%), you have to take a larger sample. A smaller significance level 
requires stronger evidence to reject the null hypothesis.

 If you insist on higher power (such as 99% rather than 90%), you will 

need a larger sample. Higher power gives a better chance of 
detecting a difference when it is really there.

 At any significance level and desired power, a two-sided alternative 

requires a larger sample than a one-sided alternative.
 At any significance level and desired power, detecting a small effect 

requires a larger sample than detecting a large effect.


