Notation: hv is the hypothesized value, o is the population standard deviation, s is the sample standard deviation, n is the sample size, df is degrees of freedom

Procedure	Conditions for Inference	Confidence interval	Hypotheses	Test Statistic/Table/P-value
type				
Ch	Data are SRS		1) $H_0: \mu = \mu_0$	One-sample z test statistic \overline{x}
16/17/18	Population has $N(\mu,\sigma)$	Confidence interval for μ is	$H_A: \mu > \mu_0$ (one-sided alternative)	$z = \frac{x - \mu_0}{\sigma / a/m}$
z test	σ is known	$x \pm z^* \frac{1}{\sqrt{n}}$ find z^* at the bottom of table C Margin of error is $m = z^* \frac{\sigma}{\sqrt{n}}$ The sample size is $n = \left(\frac{z^*\sigma}{m}\right)^2$	2) $H_0: \mu = \mu_0$ $H_A: \mu < \mu_0$ (one-sided alternative) 3) $H_0: \mu = \mu_0$ $H_A: \mu \neq \mu_0$ (two-sided alternative)	P - value is 1) $P(Z \ge z)$ 2) $P(Z \le z)$ 3) $2P(Z \ge z)$ Use table A to find p-value: $P(Z \le z)$ just value from the table body for appropriate z $P(Z \ge z) = 1 - P(Z \le z)$ $2P(Z \ge z) = 2(1 - P(Z \le z))$
Ch 20	Data are SRS	One-sample t confidence interval	4) $H_0: \mu = \mu_0$	One-sample t test
One- sample t test Matched pairs t test	Population has N(μ , σ) μ is unknown parameter σ is unknown Use s (sample standard deviation) $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$ Check conditions (use safely t procedure if): • $n < 15$: approx. Normal distribution (single peaked, roughly symmetric, no outliers, no skewness) • $n \ge 15$: no outliers, no strong skewness • $n \ge 40$: can use t procedure even for clearly skewed distribution	for μ is $\bar{x} \pm t^* \frac{s}{\sqrt{n}}$ find t^* in the body of table C by knowing df = n - 1 and level of confidence (95%, 90%, etc) $\frac{s}{\sqrt{n}}$ is the standard error	$H_A: \mu > \mu_0$ (one-sided alternative) 5) $H_0: \mu = \mu_0$ $H_A: \mu < \mu_0$ (one-sided alternative) 6) $H_0: \mu = \mu_0$ $H_A: \mu \neq \mu_0$ (two-sided alternative)	$t = \frac{x - \mu_0}{s/\sqrt{n}}$ with df = n - 1 P - value is 1) $P(T \ge t)$ 2) $P(T \le t)$ 3) $2P(T \le t)$ Use table C to find p-value (last two rows in the table for appropriate t) Matched pairs t procedures to compare the responses to the two treatments in a matched pairs design 1) find the difference between the responses within each pair. 2) apply the one-sample t test to these differences. The parameter μ in a matched pairs t procedure is the mean difference in the
				responses to the two treatments within matched pairs of subjects in the entire population.

Ch 21	Two samples are SRSs	Conf. interval for $\mu_1 - \mu_2$ is	1) $H_0: \mu_1 - \mu_2 = hv$	Two-sample t statistic
	Samples are independent	$(\overline{x} - \overline{x}) + t^* \sqrt{\frac{s_1}{s_1} + \frac{s_2}{s_2}}$	$H_A: \mu_1 - \mu_2 > hv$	$t = \frac{\overline{x_1} - \overline{x_2}}{\overline{x_1} - \overline{x_2}}$
Two-	Each population has Normal distr.	$(x_1 - x_2) \perp \iota \sqrt{n_1} \perp n_2$	(one-sided alternative)	$l = \sqrt{\frac{S_1 + S_2}{S_2}}$
Sample	$\mu_1, \mu_2, \sigma_1, \sigma_2$ are unknown	find t^* in the body of table C by		$\sqrt{\overline{n_1}} + \overline{\overline{n_2}}$
Problems	but we know (or can calculate)	knowing df and level of	2) $H_0: \mu_1 - \mu_2 = hv$	df is the smaller of $n_1 - 1$ and $n_2 - 1$
	<i>s</i> ₁ , <i>s</i> ₂	confidence (95%, 90%, etc)	$H_A: \mu_1 - \mu_2 < hv$	
	s_1 and s_2 are the sample standard		(one-sided alternative)	P – value is
	deviations	df is the smaller of $n_1 - 1$ and		1) $P(T \ge t)$
	Check conditions (use safely t	$n_2 - 1$	3) $H_0: \mu_1 - \mu_2 = hv$	2) $P(T \leq t)$
	procedure if):		$H_A: \mu_1 - \mu_2 \neq nv$	3) $2P(T \ge t)$
	• $n_1 + n_2 < 15$: approx.	Standard error of the statistic	(two-sided alternative)	Use table C to find p-value
	Normal distribution (single	$(\overline{x_1} - \overline{x_2})$ is $\sqrt{\frac{s_1}{s_1} + \frac{s_2}{s_2}}$		(last two rows in the table for
	peaked, roughly	$\sqrt{n_1}$ $\sqrt{n_1}$ n_2		appropriate t)
	symmetric, no outliers, no			
	skewness)	Use positive difference		
	• $n_1 + n_2 \ge 15$: no extreme	$x_1 - x_2$ (it easier to work)		
	outliers, no strong			
	skewness			
	• $n_1 + n_2 \ge 40$: can use t			
	procedure even for clearly			
Ch 22	skewed distribution		1) <i>II</i>	
Ch 22	negulation properties nucleon the	Ci for population proportion p is	1) $H_0: p = p_0$ H: p > p	$\hat{n} = n$
Sampla	data are an SPS of size n are based	$\hat{p} \pm z^* \frac{\hat{p}(1-\hat{p})}{2}$	$n_A \cdot p > p_0$	$z = \frac{p - p_0}{\sqrt{p - p_0}}$
proportion	on the sample propertion \hat{n}			$ p_0(1-p_0) $
proportion	on the sample proportion p	find z^* at the bottom of table C	2) $H_0: n = n_0$	γn
	#of successes in the sample	for approplevel of confidence	$H_{A}: p < p_{0}$	P = Value is 1) $P(T > T)$
	$\hat{p} = \frac{mp}{m}$	Use this interval only when the	(one-sided alternative)	1) $P(7 < 7)$
	- n is large	counts of successes and failures	. , ,	3) $2P(Z > z)$
	- \hat{p} has approximately the	are both 15 or greater	3) $H_0: p = p_0$	
	Normal distribution with		$H_A: p \neq p_0$	Use table A to find p-value:
	mean p and standard	$\hat{n}(1-\hat{n})$	(two-sided alternative)	$P(Z \leq z)$ just value from the table body
	p(1-p)	Margin of error is $m = z^* \sqrt{\frac{p(1-p)}{n}}$		for appropriate z
	deviation $\sqrt{\frac{n}{n}}$	· · ·		$P(Z \ge z) = 1 - P(Z \le z)$
		Find the sample size as		$2P(Z \ge z) = 2(1 - P(Z \le z))$
	Use this test in practice when	$(Z^*)^2$		
	$np_0 \ge 10$ and $n(1-p_0) \ge 10$	$n = \left(\frac{1}{m}\right) p^*(1-p^*)$		
		p^{st} is a guessed value for the		
		sample proportion, use $p^{st}=0.5$		

Ch 25	Two-way table: Count table used	The expected count in any cell of	H_0 : there is no	For a two–way table with <i>r</i> rows and c
	to organize data about two	a two–way table when H_0 is true	<i>relationship</i> between two	columns the chi–square statistic is
Chi-square	categorical variables. Values of the	is	categorical variables	
test	row variable label the rows that			$\chi^2 = \sum \frac{(observed \ count - expected \ count)^2}{(observed \ count - expected \ count)^2}$
	run across the table, and values of	expected count	<i>H_A</i> : there is some	$x - \Delta$ expected count
	the column variable label the	_ row total ×column total	<i>relationship</i> between two	
	columns that run down the table.	=	categorical variables	where the cum is everall pessible values.
	Safely use the chi-square test			of the categorical variable
	when all expected cell counts are	Observed counts come from the		
	at least 1 and no more than 20%	data		with $af = (r - 1)(c - 1)$
	are less than 5.			