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Abstract

Plant-microbiome optimization is a potential solution to im-
prove plant stress tolerance under water shortages. Using
early data from a directed evolution experiment, our goal is
to find beneficial microbiome compositions in the soil and
other environmental factors affecting plant drought tolerance.
In this work, we uncover the microbiome communities as-
sociated with drought using a Latent Dirichlet Allocation
method with Gibbs sampling. We reveal drought-enriched
microbiome at the phylum and class taxonomic levels that
potentially can help iteratively guide the microbiome devel-
opment process.

Introduction
The interaction of various factors such as microbiome com-
munities, soil chemistry, plant traits, and plant chemistry
plays a crucial role in plant ability to withstand limited wa-
tering conditions. Microbiome composition plays a vital role
in plant functioning and development and can potentially
improve the performance of biological systems (Compant S
2010; Farrar K 2014; Mendes R 2013). Several recent stud-
ies on cotton, rice, and peanut root microbiomes have re-
vealed certain phyla and classes that are enriched in water-
limited soil (Dai et al. 2019; Naylor and Coleman-Derr
2018; Ochoa-Hueso et al. 2018; Santos-Medellı́n et al. 2017;
Ullah et al. 2019). Understanding how soil microbiomes in-
fluence plants under drought is a challenging new area of
research. Nonetheless, unraveling complex interactions be-
tween plants and their microbiome could yield knowledge
usable to better predict the behavior of real-world crops, and
perhaps support them through many challenges in food se-
curity.

The dataset for this work comes from an ongoing green-
house experiment applying directed evolution (Cobb, Chao,
and Zhao 2013) in an attempt to iteratively optimize micro-
biome compositions to improve corn health in droughted
conditions. In each generation, plants with desired func-
tional traits, i.e., stomatal closure point and water use ef-
ficiency, are selected and their soil microbiome is used to
grow a new generation. We hope that artificial selection
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on these traits will lead to better plant performance un-
der drought and help to find stable microbiome communi-
ties that help plants to withstand water-limited conditions.
At the present stage, we present results from data on 119
microbiome-plant systems from two non-directed genera-
tions (called generation 0 and 1), between which no artifi-
cial selection was applied. They were performed in order
to understand the characteristics of the systems for experi-
mental design purposes. The seed for each pot is randomly
drawn from the stock, which belongs to an experimental
strain of corn, USDA seed bank “B73”, for which the fully
sequenced genome is available. In this experiment, the corn
is grown in sterile fritted clay in individual pots that were
inoculated with microbiomes from the soil source using the
bulk soil microbiome from prior sources. The initial micro-
biomes were collected from the vicinity of Los Alamos (for-
est soil type), NM, Fort Collins (agricultural soil type), CO,
as well as from several plants grown without any inoculated
microbiome. Plants from generation 1 are microbial descen-
dants of those from generation 0, because they have been
grown in soil inoculated with the microbiome from individ-
ual plants at the end of generation 0. In each generation, 64
corn plants were planted, and half of the plants were wa-
tered well (up to 65% volumetric water content 3 times a
week) and the other half were not well-watered (up to 45%
volumetric water content 3 times a week). After growing
plants for 10 weeks, they were droughted completely. Pre-
terminal drought measurements of the plant traits (except for
drought time and stomatal closure point that were measured
post-drought), soil chemical composition, and microbiome
sequencing were carried out. Here we focus on the analysis
of the microbiome communities, with a focus on the links
between the microbiome and the watering conditions, the
initial microbiome soil source, and the generation of the ex-
periment.

Method
To address this task, we use Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan 2003), which is a probabilis-
tic generative model developed for language modeling of
a corpus – a set of documents. Each document is repre-
sented by the count of the words present in the document.
The key assumption behind LDA is that documents are rep-
resented as probabilistic mixtures over latent topics, where



each topic is characterized by a distribution over words. This
factorization of the data is a method to associate words with
each other, and, at the same time, perform dimensionality
reduction on the documents. To learn the model, we used
Gibbs sampling (Griffiths 2002). Topic modeling with LDA,
widely applied for text mining, has been successfully ap-
plied in a few biological studies to identify human gut, oral,
and skin microbial communities (Higashi et al. 2018; Raman
et al. 2019). However, less is known about how LDA per-
forms on the soil microbiome, which is primarily analyzed
using traditional statistical methods such as dimensional re-
duction methods and tests of significance (Jochum et al.
2019; Marasco et al. 2012; Naylor et al. 2017; Ullah et al.
2019; Zolla et al. 2013). The data itself is high-dimensional
and sparse with a certain amount of unidentified taxonomic
levels. We use the MALLET software (McCallum 2002) to
identify topics at different taxonomic levels. This implemen-
tation of the LDA model is fast. We did not experience com-
putational issues when running the algorithm for our data
set.
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Figure 1: Perplexity score for cross-validation folds and
pairwise cosine similarity between taxa in topics as func-
tions of number of topics applied at the phylum level. Aver-
aged curves over folds are shown in black.
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Figure 2: Coherence and exclusivity of the most abundant
bacteria in the learned topics as functions of number of top-
ics applied at the phylum level. Averaged curves over folds
are shown in black.

Our goal is two-fold: one is to see if the LDA topics at
different taxonomic levels have links to the treatment con-
ditions of the pots – namely, the soil source, the watering
treatment (half vs full watered), and the generation of plant.
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Figure 3: Left: Overall abundance of the topics across all
pots. Right: Weighting of topic abundances at the phylum
level in terms of watering treatment and generation.

Figure 4: Topic abundance weighting at the phylum level for
the different soil sources. Size indicates overall topic abun-
dance.

Secondly, in view of these patterns, we seek to determine
which species and collections of species contribute to the
topics that can be associated with these treatment conditions.
Thus, LDA allows a view into the most important aspects of
the data, which contains more than 3000 genetic sequences
from 31 phyla and 71 classes, as well as sequences for which
no taxonomic classification can be assigned.

Before we start to discuss our LDA results, let us intro-
duce the following analogy between text and microbiome
analysis we used: the pot samples, bacterial species (taxa),
microbiome communities are viewed as the documents,
words, and topics, respectively. That is to say that individ-
ual plant microbiomes (documents) are broken down into a
distribution of topics, and these topics are distributions of
taxa (words). Due to the differences between text data and
microbiome data, some pre-processing approaches and eval-
uation metrics used for text data are not appropriate, such as
the removal of common words which are assumed not to
be useful in describing the document (stop words). We pre-
process data by aggregating basic DNA fragments from the
microbiome to identified taxonomic descriptions associated
with the DNA (phylum, class, ...), and handle incomplete
taxonomic specification for some sequences by aggregating
to the highest available taxonomic level.

To choose the appropriate number of topics, we run 5-fold
cross-validation, measure several metrics such as perplexity,
pairwise cosine similarity, coherence, and exclusivity to help
us decide how many topics is appropriate to use, and calcu-
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Figure 5: Relative phyla amplification for each topic, show-
ing only the dominant phyla.

late averaged results as a function of the number of topics. A
perplexity was calculated to see how well a model performs
on the unseen held-out test data. A pairwise cosine similarity
was calculated between words (taxa) in topics to determine
how distinct the distribution of taxa is between topics. We
use coherence (Stevens et al. 2012) that measures whether
the most abundant taxa in a topic tend to co-occur together
in other topics. The exclusivity metric (Bischof and Airoldi
2012; McCallum 2002) finds the most unique taxa for each
topic. Figure 1 shows the perplexity score calculated on the
test data and pairwise cosine similarity between bacteria in
topics. Figure 2 shows topic coherence and exclusivity of
the most abundant bacteria in the learned topics. There is
no right answer when determining the number of topics, too
many topics will result in indistinguishable topics, in con-
trast, using too few topics may hurt the explanatory power
of the model. Therefore, we choose the appropriate num-
ber of topics based on described metrics behavior when they

tend to be stable gradually after reaching the optimal level.
Based on these metrics, we decided to use 6 topics at the
phylum level, as we did not observe significant improvement
for larger topic counts. After fixing the number of topics, we
ran LDA once again on the full data set.
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Figure 6: Left: Overall abundance of the topics across all
pots. Right: Weighting of topic abundances at the class level
in terms of watering treatment and generation.

Figure 7: Topic abundance weighting at the class level for
the different soil types. Size indicates overall topic abun-
dance.

Results
Figure 3 shows the overall abundance of each topic across all
pots and the weighting of each topic’s abundance towards
watering treatment type and generation on a 0-1 scale at
phylum taxonomic level. Figure 4 shows the weighting of
topic abundances for the different soil types: Los Alamos,
Fort Collins, and None (no inoculated microbiome). Topic
3 is more abundant in the half-watered pots, whereas top-
ics 1 and 6 are more abundant in the full-watered pots.
We don’t observe that any topic is significantly skewed to-
wards a particular soil type at the phylum level. On aver-
age, our soil microbiome in pot predominantly consisted of
the phyla Proteobacteria (44.15%), Bacteroidota (13.67 %),
Actinobacteriota (13.08 %), Verrucomicrobiota (9.05 %),
and Cyanobacteria (8.01 %). Figure 5 shows the relative
amplification of each taxa within each topic. We define this
as the probability of the phylum given the topic divided by
the frequency of that phylum in the overall dataset, and then
normalized for each topic across all taxa; the sum of the rel-
ative amplification for all taxa in each topic is, by defini-
tion, one. In other words, the relative amplification shows



which taxa’s abundance is most amplified in that topic in
comparison to their abundance in the overall dataset. We
only displayed a subset of phyla whose relative amplifica-
tion is greater than 0.05. We remark on the connections be-
tween fig. 3 and fig. 5. For example, topic 1 is related to full-
watering treatment, and the most amplified phylum is Verru-
comicrobiota. Similarly, topic 3 is related to half-watering,
and one of the most amplified phyla in that topic is Acti-
nobacteriota. Previous studies have shown these two bacte-
ria are associated with these watering conditions in different
host plants (Naylor and Coleman-Derr 2018).
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Figure 8: Relative amplification for species within each topic
at the class level. The y-axis labels display the phylum name
followed by the class name.

We performed a similar analysis for the class level, and
8 topics were found to balance the metrics used for topic
selection. Figures 6, 7, 8 show analogous plots to those at
the phylum level, but at the class level. The results show
that the class-level topics are more strongly associated with
the experimental conditions than the phylum-level topics.
Topics 3, 5, and 7 are more abundant in the full-watered
pots whereas topics 6 and 8 are more abundant in the half-

watered pots. Figure 7 demonstrates that most topics are
not very strongly associated with a particular soil source,
with the notable exception of topic 1, which is highly abun-
dant in the pots with Fort Collins soil microbiome inoc-
ulation, and not present in the None soil source. This is
especially interesting since neither watering nor genera-
tion have a strong relationship with this topic. On average,
our soil microbiome in pot predominantly consisted of the
classes Gammaproteobacteria (25.65%), Alphaproteobacte-
ria (18.73 %), Bacteroidia (13.52 %), Actinobacteria (12.41
%), Verrucomicrobiae (8.83 %), and Cyanobacteriia (7.21
%). In figure 5 we observed that Actinobacteriota, Crenar-
chaeota, Fibrobacterota, Patescibacteria phyla can be asso-
ciated with water-limited soil. Figure 8 shows that all classes
except Rubrobacteria (Actinobacteriota) that belong to Acti-
nobacteriota, Crenarchaeota, Fibrobacterota phyla are also
more amplified in the half-watered pots. However, classes
from the phylum Patescibacteria ended up in many topics,
i.e., ABY1 and Saccharimonadia classes appear in the half-
watered associated topics 1 or 6, whereas Parcubacteria and
Gracilibacteria classes show up in the topics 4 and 3, re-
spectively. We also note that topic 3 is strongly associated
with the second generation (generation 1) of plants – where
none of the phylum-level topics could be strongly ascribed
to generation 1.

Conclusion

We have explored how data-driven LDA and taxonomic
classification can be combined to explore the content of a
large, complex data set of microbiome samples. By run-
ning LDA at different taxonomic levels we can easily de-
tect which taxa are associated with different experimental
conditions, such as water-limited soil and soil source type.
Because LDA seeks a compact, unsupervised representation
of the data, this is far simpler than exploring each taxon in-
dividually, and reveals associations between the taxa. Our
analysis gives some results similar to previous studies of
plant microbiomes, and gives rise to a host of hypotheses
which might be tested in more targeted, small-scale experi-
ments. Moving forward, we want to connect the expression
of certain plant functional traits to the topic distributions for
a better understanding of the plant-microbiome interaction.
In this way, we may study which microbial communities
may potentially improve plant performance under drought.
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